米乐体育在线登录入口网页版

内网

检测到您当前使用浏览器版本过于老旧,会导致无法正常浏览网站;请您使用电脑里的其他浏览器如:360、QQ、搜狗浏览器的极速模式浏览,或者使用谷歌、火狐等浏览器。

下载Firefox

Deconstructing endodermal organ development to reconstruct organs from stem cells

日期: 2018-11-28
生命科学学院2018年度秋季学期学术系列讲座之十一
题目:Deconstructing endodermal organ development to reconstruct organs from stem cells
讲座人:Maike Sander, M.D.
Professor
Department of Pediatrics and Cellular & Molecular Medicine
Director, Pediatric Diabetes Research Center
Sanford Consortium for Regenerative Medicine
University of California, San Diego
时间:2018年12月14日(星期五),13:00-14:30
地点:生命科学学院邓祐才报告厅
主持人:徐成冉研究员
摘要:
Developmental progression depends on temporally defined changes in gene expression mediated by transient exposure of lineage intermediates to signals in the progenitor niche. To gain a comprehensive understanding of how signals are translated into transcriptional changes during developmental progression, we generated genome-scale maps of gene transcription, transcription factor occupancy, chromatin modifications, and 3D chromatin during the stepwise differentiation of human pluripotent stem cells (hPSCs) toward the pancreatic lineage. Building upon these maps, we investigated epigenetic mechanisms of gene activation and gene silencing associated with organ lineage commitment and cell differentiation. We found that chromatin patterns are highly informative for identifying functionally related genes and that epigenetic information facilitates the identification of novel regulators of developmental transitions. We further observed that binding of specific transcription factors serves as a predictor for the cell’s ability to respond to extrinsic differentiation cues. Through manipulation of transcription factors and chromatin modifiers during develpomental progression, our work has provided insight into cell-intrinsic epigenetic mechanisms that modify signal-induced transcriptional responses. These findings have implications for the design of directed differentiation and reprogramming strategies to produce functional endodermal organ cell types in vitro.
欢迎各位老师同学积极参加!
Baidu
sogou
正规买球app十佳排行_世界杯网站上买球_世界杯比赛买球 爱游戏 - 爱游戏体育官方网站 爱游戏平台-爱游戏官方网站 亚博yabo娱乐-亚博yabo娱乐2022年最新app OB欧宝体育-欧宝体育app注册 华体会体育登录-网页登录入口
米乐体育在线登录入口网页版 - 米6米乐体育app官网